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Summary and Key Findings

Key Findings

A power grid optimization framework has been implemented in OpenCossan. The
toolbox presents the following main features:

1. Optimal allocation of distributed generators has been investigated and
proved effective.

2. Robust-Design-Optimization provides reliable solution which accounts for in-
herent uncertainties in the operation and environment.

3. Multi-energy system modelling and optimization outperform ’classical’ analysis
where energy networks are treated 'separately’ or 'independently’;
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Figure 1: The Barry island power grid and heat network [1], modified from X. Liu et al
2016.
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1 Problem Description

This work presents a framework for stochastic analysis, simulation and optimization of
networked infrastructures. We investigate the framework with the goal of optimally in-
vest on distributed energy sources. Distributed energy sources (e.g. wind turbines and
storage systems) can be integrated within the grids and their performance is modelled.
The effect of variable weather conditions and operations on the overall system cost and
reliability is assessed taking into account relevant sources of uncertainty. A Monte Carlo
Optimal Load Flow simulator is employed and statistical indicators of the system cost and
reliability are computed. The frameworks has been tested on 2 examples. First, we com-
pute an optimal investment on solar generators to be allocated on a 14 nodes power grid
[2]. Finally, we assess a combined investment on electric-heat power generators on an
electric grid coupled to an heat district network in the Barry island in Fig. 1 [1]. Storages
(ST), wind turbines (WT), Photo-Voltaic panels (PV) and Heat pumps are the considered
technologies. Generators’ sizes and positions are analyzed to reveal the sensitivity of the
cost and reliability of the grid and an optimal investment problem is tackled by using a
genetic algorithm fro multi-objective optimization.

Cite [2] and [1]

2 Analysis

In [1], a Robust Design Optimization is defined. Design variable is a matrix x of allocated
technologies within the grid. The combinatiorial space of x is explored using a genetic
algorithm and the fitness of each candidate solution is evaluated using a Monte Carlo
simulator which allows propagating the relevant sources of uncertainty to a reliability index
(the Energy-not-supplied £N S) and to the expected global cost of the investment (C;,).
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Figure 2: The 3 best chromosomes selected among the best front in the generation of the

NSGA-II procedure.

Table 1: Example of low cost investment, high reliability investment and best compro-
mise solution, see Fig. 2. Statistical analysis on the global cost and network reliability

performance.

Solution | Reliable | Compromise | Cheap
E[ENS]| 290 315 435
E[C] 209 202 193
Cv[ENS] | 1.55 1.46 0.79
Pos| EN S| 1302 1578 2520
Cv [Con) 0.27 0.29 0.42
Po5[Ciip] 287.1 284.3 301.1
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Summary and Key Findings

Key Findings
After careful analysis, a number of conclusions have been reached:

1. A novel simulation method based on a computationally cheap emulator of the
optimal power flow is presented and used to speed up the computation of the
expected energy not supplied by the network.

2. The method greatly reduces the computational cost of the time-demanding
analysis (up to a 99% reduction).

3. Problems of lack of data are discussed and the efficient simulator, embedded
within a generalised uncertainty quantification framework, allows the effect of
lack of data to be quantified.

4. Sensitivity analysis ranks sources of imprecision and allows data collec-
tion prioritisation (i.e. parameters that if better specified lead to the highest
reduction of the imprecision in the resilience index).

Figure 3: Severe weather conditions (e.g. an ice storm in figure) are triggering power grid
failure.
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3 Problem Description

Extreme weather conditions have the potential to trigger severe power grid failures, com-
promising its structure and operations. Fig. 3 shows an example of failure induced by a
severe ice storm. The weather conditions drifting towards extremes and the increasing
use of renewable energy sources are tightening the interactions between power network
states and the external environment. Robust reliability/resilience assessment frameworks
have, then, to incorporate weather models and consider interactions between grid states
and environmental states, accounting for relevant sources of randomness (i.e. aleatory
uncertainty) but also for parameters values imprecision (i.e. epistemic uncertainty). In
this work we propose a framework for (imprecise) probabilistic resilience assessment of
power networks. The framework has been designed to capture complex coupling between
weather conditions and power grid operations, by incorporating weather-influenced fail-
ures and repairs of the grid’s components. An Artificial Neural Network (ANN) is trained
to emulate the total load curtailed given specific lines failures and the load profile, and
has been embedded within the framework to increase computational efficiency. For fur-
ther details refer to [3].

Cite: A power-flow emulator approach for resilience assessment of repairable power
grids subject to weather-induced failures and data deficiency [3]

4 Analysis

The framework has been applied on a modified version of the IEEE-RTS 24 nodes power
grid which counts 24 nodes, 17 loads, 32 generating units, 33 transmission lines, 5 trans-
former links and a total installed capacity of 3.405 GW.

A parallel computing strategy has been used to solve 15000 independent years; For the
selected parameter setting the average number of failure events per each T;,, = 8760 [h]
(1 year) is estimated to be 311, of which 73 normal failures 223 wind-induced failures and
15 lightning-induced failures. The expected load curtailed for each failure event is esti-
mated to be 0.23 [W/failure]. The Expected Energy not Supplied is 147.5 [MWh/yr] with
coefficient of variation (CoV) 0.175, and slowly converges after about 2000 simulations.

The probabilistic model describing the uncertainty affecting the grid and weather is ex-
tended to include different imprecision levels affecting the parameters of the model. The
grid model and ANN surrogates are tested and effect of imprecision quantified in the re-
silience score as displayed by Fig.5.
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Figure 4: An example of 9 sequential failure events extracted from a simulated year for
the grid. Strong Wind occurrence (from hour 177 to hour 180) increase line failure rates
and decrease the repair speed, hence, leading to 4 common cause outages.
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Figure 5: Comparison between Fuzzy Expected Energy Not Supplied (E[EN S]) computed
using the original Optimal Power Flow (OPF) model and the Artificial Neural Network

surrogate.
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Summary and Key Findings

Key Findings

A reinforcement-learning toolbox. Key findings are as follows:

1. Operations and maintenance of grids is framed as a Sequential Decision
Problem;

2. Prognostics and health management capability support maintenance
decision-making;

3. Q-learning with neural networks tackle high dimensional and continuous
problems;

4. A grid with prognostics and health management is considered as test case study;

5. Comparison with BellmanaAZs optimal policy highlights the effectiveness of

the method;
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Figure 6: The proposed Reinforcement Learning method [4]
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s Problem Description

We develop a Reinforcement Learning framework for the optimal management of the op-
eration and maintenance of power grids equipped with prognostics and health manage-
ment capabilities. Reinforcement learning exploits the information about the health state
of the grid components. Optimal actions are identified maximizing the expected profit,
considering the aleatory uncertainties in the environment. To extend the applicability of
the proposed approach to realistic problems with large and continuous state spaces, we
use Artificial Neural Networks (ANN) tools to replace the tabular representation of the
state-action value function. The non-tabular Reinforcement Learning algorithm adopting
an ANN ensemble is designed and tested on the scaled-down power grid case study,
which includes renewable energy sources, controllable generators, maintenance delays
and prognostics and health management devices. Figure 6 depicts the framework archi-
tecture. The point of strengths and weaknesses of the method are identified by compari-
son to the reference solution (BellmanaAZs optimally). Results show good approximation
capability of Q-learning with ANN, and that the proposed framework outperforms expert-
based solutions to grid operation and maintenance management.

Cite [4] A reinforcement learning framework for optimal operation and maintenance of
power grids, Applied Energy 2019, https://doi.org/10.1016/j.apenergy.2019.03.027

6 Analysis

A method which combines Q-learning algorithm and an ensemble of Artificial Neural Net-
works is developed to identify optimal operations and maintenance (O&M) policies. An
analytic (Bellman’s) solution is provided for scaled-down power grid, which includes Prog-
nostic Health Management devices, renewable generators and degrading components,
giving evidence that Reinforcement Learning can really exploit the information gathered
from Prognostic Health Management devices, which helps to select optimal O&M actions
on the system components. The proposed strategy provides accurate solutions compa-
rable to the true optimal. Although inevitable approximation errors have been observed
and computational time is an open issue, it provides useful direction for the system oper-
ator. In fact, he/she can now discern whether a costly repairing action is likely to lead to a
long-term economic gain or is more convenient to delay the maintenance.
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